

Safely Charging EV and PHEV from the Electricity Grid

Chris Mi, Ph.D.

Associate Professor, Department of Electrical and Computer Engineering
Director, DTE Power Electronics Laboratory
University of Michigan-Dearborn
4901 Evergreen Road, Dearborn, MI 48128 USA

email: chrismi@umich.edu, Tel: (313) 583-6434, Fax: (313)583-6336

Facts about Lithium Ion Batteries

- Lithium ion batteries do not like over charge or over discharge
 - Potential damage and hazards/risks
- Construction of lithium ion battery
 - Very thin metal (15 to 50 um),
 - Cu for anode, Al for cathode
 - Metal oxides, powder
 - Plastic material for packaging
 - Flammable acidic liquids
- Highly sensitive to defects, process impurity, improper packaging, and improper handling

Source of Hazard/Risks

Oxygen

- Released from layered cathode during over charge
- Oxygen access to cells after rupture/opening via gas pressure buildup or external impact

Combustibles

- Lithium
- Electrolyte (solvents and salts)
- Gasses (hydrogen rich)
- Heat/Energy release via anode and cathode decomposition
 - Cell short, internal or external

Safety: A Major Concern

- Battery safety
- Electricity safety

After

Before

Fire Damaged PHEV Prius

Issues of Lithium Batteries

- Safety
 - Electrolyte spill
 - Smoke
 - Fire
 - Explosion
- Capacity fade
 - Less miles every month
- Life cycle
 - Battery end of life earlier than expected
 - Deep discharge, charge sustain, vs. battery life

The pain is exacerbated in large lithium ion battery systems

Batteries Fail due to Many Reasons

Battery charging and management is one key aspect of battery/Ev safety

What Can Electricity Do?

In the US, per year, due to electricity

600 death

3600 disabling injury

4,000 non-disabling injuries

9% of all industrial fatalities

Electric Shock

Arcing

Blast

EV Needs to be charged from the utility grid

http://ehs.okstate.edu/modules/electric/index.htm

Risks of High Voltage Batteries

Electric

 Electric shock: manufacturing personnel, service personnel, emergency responders, owner

Thermal

- Smoke
- Fire
- Explosion

Chemical

- Acid spill
- Toxic gas
- Burns

Risks of High Voltage Batteries

- Low/short term risks
 - Injury: burns, electric shocks,
 - Market risks (bad image)
- Medium/middle term risks
 - Loss of property
 - Disability
- High/long term risks
 - Loss of life
 - Loss of business/income
 - Loss of opportunity
 - Dead of EV industry (another era of EV...)

Charging Technology

- Direct charging, or conductive charging
 - There is direct electrical contact between the batteries and the charger. Conductive charging is achieved by connecting a device to a power source with plug-in wires.
- Inductive charging
 - Energy is transferred through electromagnetic coupling, not direct wire connection – close proximity
- Wireless charging through a distance

Advantages of Inductive Charging

- Low risk of electric shock
- All weather proof due to no exposed wire
 - Especially in public charging stations
 - Prevent water flow in so as to prevent short circuits due to water

Disadvantages of Inductive Charging

- Low efficiency
- Low power
- Manufacturing complexity
- High cost
- Equipment specific (no exchangeability)
- Charge station is needed

GM EV1 Magne Charger

- 208-240V/32A input
- 60Hz
- 6.6kW
- 25kg (55 lb)
- Efficiency 86% at peak power

http://www.evchargernews.com/miscfiles/gm%20atv%20wm7200%20owners%20manual.pdf

Isolated Charger Topology

- Isolated architecture
- Phase shifted control

Inductive charging techniques

Wireless Charging

- Wireless changing is different from inductive charging, and information transmission, such as radio signal
- Wireless means transferring power and energy in a great distance.
- It is typically done through electromagnetic resonance
- MIT and University of Tokyo, some of the leaders in this area.

Wireless Charging

Wireless Charging of EV

Resonant Topology

Power is transmitted wirelessly in a distance. Frequency at 10MHz or more

Current Issues and Future of Wireless Charging

- Efficiency is low (20%??)
- Distance is not great (30 cm ??)
- Size is too big
 - For 100W, the size of the coils exceeded 50 cm for distance of 50 cm
- Potential use with ultra cap
- Electrified highway, etc.

A Compromise

- Home charging using conductive charging
- Public charging station using inductive charging
- ???
- This does not seem possible since these are two different technologies, unless each car is equipped with
 - Two different chargers!!!

Costs and forecast how the costs will decrease

- Cost and efficiency are two major factors
- Cost will only decrease as the quantity goes up
- Power semiconductor technology can play a role
- Silicon Carbide devices can further increase switching frequency hence reduce weight of coupling

Prototype PHEVs at UMD

- Three PHEV's were converted
 - Prius PHEV (7kWh, equi. E-range 30 miles)
 - Chrysler Aspen (11kWh, equi. E-range 21 miles
 - Chrysler Minivan (11kWh, equi. E-range 25 miles)
 - Saturn Vue (underway,10kWh, equi. estimated

E-range 30 miles)

Work supported by and performed for Chrysler, DTE

Energy/GM/Michigan Public Service Commission, DOE and Army